Show Posts

This section allows you to view all posts made by this member. Note that you can only see posts made in areas you currently have access to.


Messages - Alberto Dominguez

Pages: 1 [2] 3 4 5
16
Biology / Equation of the life
« on: August 12, 2012, 02:26:54 PM »
Equation of the Life:



Diagram with Transcription process:



Diagram with Transcription and Translation process:


17
Biology / Animal Cell Structure
« on: August 12, 2012, 02:22:11 PM »

18
Biology / Life Cycle
« on: August 12, 2012, 02:13:50 PM »
One picture that I have created on my wife's Ipad that synthesizes the Cycle of the Life in our Universe:



20
Astronomy and Astrophysics / Journey to the Starts
« on: June 30, 2012, 10:28:11 AM »

21
General Discussion / Re: Presentación y actividades interesantes
« on: April 05, 2012, 05:24:57 PM »
Dejo también por aquí unas conferencias sobre Neurociencias:

http://xn--aodelaneurociencia-n0b.senc.es/images/actividades/13/programa.pdf

En la Residencia de Estudiantes:  http://xn--aodelaneurociencia-n0b.senc.es/detalleactividad.php?id=13

Otro ciclo interesante del Instituto de Salud Carlos III:

http://xn--aodelaneurociencia-n0b.senc.es/images/actividades/16/programa.pdf

22
Fractals / Re: Mandelbrot Set
« on: April 05, 2012, 08:48:12 AM »
Simply add that I used for development the Netbeans IDE over Fedora.
To install GLUT library in Fedora and link it to Netbeans:

Install package: Freeglut developmental libraries and header files.

And then adding in Netbeans - Project Properties - Linker - Libraries: glut, X11, GL, GLU (case sensitive)

I dont look for the files for libraries, writing their names is enough.  Mysteries of Linux...   :)

In Spanish:

Añadir simplemente que use como IDE para desarrollo Netbeans sobre Fedora.
Para instalar la librería GLUT del OpenGL que hace falta en Fedora y linkarla en Netbeans:

Instalar el paquete: Freeglut developmental libraries and header files.

Y luego añadiendo en el NetBeans - Propiedades del proyecto - Linker - Libraries: glut, X11, GL, GLU (respetando mayúsculas)

Las librerias no he buscado los archivos, simplemente he tecleado esos nombres que se ven ahí... Misterios del Linux...   :)

23
General Discussion / Re: Presentación y actividades interesantes
« on: April 05, 2012, 07:06:51 AM »
Pues tiene buena pinta, a ver si puedo pasarme por alguno de ellos...

Lo mismo el jueves me paso por la RAC: http://www.rac.es/ficheros/doc/00849.pdf

24
General Discussion / Einstein Archives Online
« on: March 21, 2012, 08:47:38 PM »

25
General Discussion / Interesting Courses
« on: February 19, 2012, 09:02:30 AM »

27
Mathematics / Re: Useful Trigonometric Identities
« on: February 12, 2012, 11:44:08 AM »
sinx=\sqrt{\frac{1-cos2x}{2}}

cosx=\sqrt{\frac{1+cos2x}{2}}

28
Mathematics / Useful Integrals
« on: February 12, 2012, 11:37:02 AM »
\int sin^{2}xdx=\int\frac{1-cos2x}{2}dx

\int cos^{2}xdx=\int\frac{1+cos2x}{2}dx

30
Classical Mechanics / Rotation Matrix and Relative Movement
« on: February 04, 2012, 08:04:10 AM »
If we have reference systems S and S':



We can build a Rotation Matrix to transform coordinates in two ways:

\mathcal{R}=\left[\begin{array}{cc}cos\theta & sin\theta\\-sin\theta & cos\theta\end{array}\right]

1.- We can express the vectors of the basis S' in function of vector of basis S:

e'_{1}=cos\theta e_{1}+sin\theta e_{2}
e'_{2}=-sin\theta e_{1}+cos\theta e_{2}

Then the matrix \mathcal{R} will be formed by the components of each vector in rows.

2.- We can express the vectors of the basis S in function of vector of basis S':

e_{1}=cos\theta e'_{1}-sin\theta e'_{2}
e_{2}=sin\theta e'_{1}+cos\theta e'_{2}
 
Then the matrix \mathcal{R} will be formed by the components of each vector in columns.

Rotation matrices are square matrices, with real entries. More specifically they can be characterized as orthogonal matrices with determinant 1:

\mathcal{R}^{T}=\mathcal{R}^{-1}, |\mathcal{R}|=1

Kinematic Equations of Relative Movement:



\bar{R} is the vector joining the origins of both reference systems.

\bar{r}'=\mathcal{R}(\bar{r}-\bar{R})

\bar{r}=\mathcal{R}^{T}\bar{r}'+\bar{R}

\bar{v}'=\mathcal{R}[\bar{v}-\bar{V}-\bar{\omega}\times(\bar{r}-\bar{R})]

\bar{v}=\mathcal{R}^{T}[\bar{v}'+\bar{\omega}'\times\bar{r}']+\bar{V}

\bar{a}'=\underbrace{-\bar{\alpha}'\times\bar{r}'}_{acimutal}\underbrace{-2\bar{\omega}'\times\bar{v}'}_{Coriolis}\underbrace{-\bar{\omega}'\times\bar{\omega}'\times\bar{r}'}_{centripeta}+\mathcal{R}\bar{a}\underbrace{-\mathcal{R}\bar{A}}_{arrastre}

\bar{a}=\bar{A}+\mathcal{R}^{T}[\bar{a}'+\bar{\alpha}'\times\bar{r}'+2\bar{\omega}'\times\bar{v}'+\bar{\omega}'\times\bar{\omega}'\times\bar{r}']

Pages: 1 [2] 3 4 5